Thiosulfate reduction in Salmonella enterica is driven by the proton motive force.
نویسندگان
چکیده
Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (ΔE°' = -328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined oxidation of sulfide and sulfite to thiosulfate in a reverse of the physiological reaction. In contrast to the forward reaction the exergonic thiosulfate-forming reaction was PMF independent. Electron transfer from formate to thiosulfate in whole cells occurs predominantly by intraspecies hydrogen transfer.
منابع مشابه
Mechanism of bactericidal activity of microcin L in Escherichia coli and Salmonella enterica.
For the first time, the mechanism of action of microcin L (MccL) was investigated in live bacteria. MccL is a gene-encoded peptide produced by Escherichia coli LR05 that exhibits a strong antibacterial activity against related Enterobacteriaceae, including Salmonella enterica serovars Typhimurium and Enteritidis. We first subcloned the MccL genetic system to remove the sequences not involved in...
متن کاملATPase-Independent Type-III Protein Secretion in Salmonella enterica
Type-III protein secretion systems are utilized by gram-negative pathogens to secrete building blocks of the bacterial flagellum, virulence effectors from the cytoplasm into host cells, and structural subunits of the needle complex. The flagellar type-III secretion apparatus utilizes both the energy of the proton motive force and ATP hydrolysis to energize substrate unfolding and translocation....
متن کاملThe Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium
The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of co...
متن کاملMolecular Architecture of the Bacterial Flagellar Motor in Cells
The flagellum is one of the most sophisticated self-assembling molecular machines in bacteria. Powered by the proton-motive force, the flagellum rapidly rotates in either a clockwise or counterclockwise direction, which ultimately controls bacterial motility and behavior. Escherichia coli and Salmonella enterica have served as important model systems for extensive genetic, biochemical, and stru...
متن کاملThe Hyb Hydrogenase Permits Hydrogen-Dependent Respiratory Growth of Salmonella enterica Serovar Typhimurium
Salmonella enterica serovar Typhimurium contains three distinct respiratory hydrogenases, all of which contribute to virulence. Addition of H(2) significantly enhanced the growth rate and yield of S. Typhimurium in an amino acid-containing medium; this occurred with three different terminal respiratory electron acceptors. Based on studies with site-specific double-hydrogenase mutant strains, mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 194 2 شماره
صفحات -
تاریخ انتشار 2012